#include #include #include #include #include "ufodecode.h" #include "ufodecode-private.h" #include "config.h" #ifdef HAVE_SSE #include #endif #define CHECKS #ifdef DEBUG # define SLOW_CHECKS # define ALL_CHECKS # define VERBOSE #endif /* DEBUG */ #ifdef ALL_CHECKS # undef HAVE_SSE #endif /* ALL_CHECKS */ #define IPECAMERA_NUM_ROWS 1088 #define IPECAMERA_NUM_CHANNELS 16 /**< Number of channels per row */ #define IPECAMERA_PIXELS_PER_CHANNEL 128 /**< Number of pixels per channel */ #define IPECAMERA_WIDTH (IPECAMERA_NUM_CHANNELS * IPECAMERA_PIXELS_PER_CHANNEL) /**< Total pixel width of row */ #define IPECAMERA_MODE_16_CHAN_IO 0 #define IPECAMERA_MODE_4_CHAN_IO 2 #define IPECAMERA_MODE_12_BIT_ADC 2 #define IPECAMERA_MODE_11_BIT_ADC 1 #define IPECAMERA_MODE_10_BIT_ADC 0 typedef struct { unsigned int pixel_number : 8; unsigned int row_number : 12; unsigned int pixel_size : 4; unsigned int magic : 8; } payload_header_v5; /** * Check if value matches expected input. */ #ifdef VERBOSE # define CHECK_VALUE(value, expected) \ if (value != expected) { \ fprintf(stderr, "<%s:%i> 0x%x != 0x%x\n", __FILE__, __LINE__, value, expected); \ err = 1; \ } #else # define CHECK_VALUE(value, expected) \ if (value != expected) { \ err = 1; \ } #endif /** * Check that flag evaluates to non-zero. */ #ifdef VERBOSE # define CHECK_FLAG(flag, check, ...) \ if (!(check)) { \ fprintf(stderr, "<%s:%i> Unexpected value 0x%x of " flag "\n", __FILE__, __LINE__, __VA_ARGS__); \ err = 1; \ } #else # define CHECK_FLAG(flag, check, ...) \ if (!(check)) { \ err = 1; \ } #endif /** * \brief Setup a new decoder instance * * \param height Number of rows that are expected in the data stream. Set this * smaller 0 to let the decoder figure out the number of rows. * \param raw The data stream from the camera or NULL if set later with * ufo_decoder_set_raw_data. * \param num_bytes Size of the data stream buffer in bytes * * \return A new decoder instance that can be used to iterate over the frames * using ufo_decoder_get_next_frame. */ UfoDecoder * ufo_decoder_new (int32_t height, uint32_t width, uint32_t *raw, size_t num_bytes) { if (width % IPECAMERA_PIXELS_PER_CHANNEL) return NULL; UfoDecoder *decoder = malloc(sizeof(UfoDecoder)); if (decoder == NULL) return NULL; decoder->width = width; decoder->height = height; ufo_decoder_set_raw_data(decoder, raw, num_bytes); return decoder; } /** * \brief Release decoder instance * * \param decoder An UfoDecoder instance */ void ufo_decoder_free(UfoDecoder *decoder) { free(decoder); } /** * \brief Set raw data stream * * \param decoder An UfoDecoder instance * \param raw Raw data stream * \param num_bytes Size of data stream buffer in bytes */ void ufo_decoder_set_raw_data(UfoDecoder *decoder, uint32_t *raw, size_t num_bytes) { decoder->raw = raw; decoder->num_bytes = num_bytes; decoder->current_pos = 0; } static int ufo_decode_frame_channels_v0(UfoDecoder *decoder, uint16_t *pixel_buffer, uint32_t *raw, size_t num_words, size_t *offset) { static int channel_order[IPECAMERA_NUM_CHANNELS] = { 15, 13, 14, 12, 10, 8, 11, 7, 9, 6, 5, 2, 4, 3, 0, 1 }; static int channel_size = (2 + IPECAMERA_PIXELS_PER_CHANNEL / 3); const int bytes = channel_size - 1; const int num_rows = decoder->height; const size_t cpl = (decoder->width / IPECAMERA_PIXELS_PER_CHANNEL); const size_t cpi = num_rows * cpl; int pos = 0; uint32_t data; #ifdef HAVE_SSE __m128i mask = _mm_set_epi32(0x3FF, 0x3FF, 0x3FF, 0x3FF); __m128i packed; __m128i tmp1, tmp2; uint32_t result[4] __attribute__ ((aligned (16))) = {0}; #endif if (cpi * channel_size > num_words) { #ifdef VERBOSE fprintf(stderr, "Not enough data to decode frame, expected %lu bytes, but received %lu\n", cpi * channel_size * sizeof(uint32_t), num_words * sizeof(uint32_t)); #endif return EILSEQ; } for (size_t c = 0; c < cpi; c++) { const int info = raw[0]; int row = (info >> 4) & 0x7FF; int channel = info & 0x0F; int pixels = (info >> 20) & 0xFF; #ifdef SLOW_CHECKS int header = (info >> 30) & 0x03; const int bpp = (info >> 16) & 0x0F; int err; CHECK_FLAG("raw header magick", header == 2, header); CHECK_FLAG("row number, only %i rows requested", row < num_rows, row, num_rows); CHECK_FLAG("pixel size, only 10 bits are supported", bpp == 10, bpp); CHECK_FLAG("channel, limited by %zu output channels", channel < cpl, channel, cpl); #endif if ((row > num_rows) || (channel > cpl) || (pixels > IPECAMERA_PIXELS_PER_CHANNEL)) return EILSEQ; channel = channel_order[channel]; int base = row * IPECAMERA_WIDTH + channel * IPECAMERA_PIXELS_PER_CHANNEL; /* "Correct" missing pixel */ if ((row < 2) && (pixels == (IPECAMERA_PIXELS_PER_CHANNEL - 1))) { pixel_buffer[base] = 0; /* base++; */ } #ifdef SLOW_CHECKS else CHECK_FLAG("number of pixels, %i is expected", pixels == IPECAMERA_PIXELS_PER_CHANNEL, pixels, IPECAMERA_PIXELS_PER_CHANNEL); #endif #ifdef HAVE_SSE for (int i = 1 ; i < bytes-4; i += 4, base += 12) { packed = _mm_set_epi32(raw[i], raw[i+1], raw[i+2], raw[i+3]); tmp1 = _mm_srli_epi32(packed, 20); tmp2 = _mm_and_si128(tmp1, mask); _mm_storeu_si128((__m128i*) result, tmp2); pixel_buffer[base+0] = result[3]; pixel_buffer[base+3] = result[2]; pixel_buffer[base+6] = result[1]; pixel_buffer[base+9] = result[0]; tmp1 = _mm_srli_epi32(packed, 10); tmp2 = _mm_and_si128(tmp1, mask); _mm_storeu_si128((__m128i*) result, tmp2); pixel_buffer[base+1] = result[3]; pixel_buffer[base+4] = result[2]; pixel_buffer[base+7] = result[1]; pixel_buffer[base+10] = result[0]; tmp1 = _mm_and_si128(packed, mask); _mm_storeu_si128((__m128i*) result, tmp1); pixel_buffer[base+2] = result[3]; pixel_buffer[base+5] = result[2]; pixel_buffer[base+8] = result[1]; pixel_buffer[base+11] = result[0]; } /* Compute last pixels by hand */ data = raw[41]; pixel_buffer[base++] = (data >> 20) & 0x3FF; pixel_buffer[base++] = (data >> 10) & 0x3FF; pixel_buffer[base++] = data & 0x3FF; data = raw[42]; pixel_buffer[base++] = (data >> 20) & 0x3FF; pixel_buffer[base++] = (data >> 10) & 0x3FF; pixel_buffer[base++] = data & 0x3FF; #else for (int i = 1 ; i < bytes; i++) { data = raw[i]; # ifdef SLOW_CHECKS header = (data >> 30) & 0x03; CHECK_FLAG("raw data magic", header == 3, header); if (err) return err; # endif pixel_buffer[base++] = (data >> 20) & 0x3FF; pixel_buffer[base++] = (data >> 10) & 0x3FF; pixel_buffer[base++] = data & 0x3FF; } #endif data = raw[bytes]; #ifdef SLOW_CHECKS header = (data >> 30) & 0x03; CHECK_FLAG("raw data magic", header == 3, header); CHECK_FLAG("raw footer magic", (data & 0x3FF) == 0x55, (data & 0x3FF)); if (err) return err; #endif int ppw = pixels >> 6; for (int j = 0; j < ppw; j++) pixel_buffer[base++] = (data >> (10 * (ppw - j))) & 0x3FF; pos += channel_size; raw += channel_size; } *offset += pos; return 0; } static int ufo_decode_frame_channels_v4(UfoDecoder *decoder, uint16_t *pixel_buffer, uint32_t *raw, size_t num_words, size_t num_rows, size_t *offset) { static const int channel_order[IPECAMERA_NUM_CHANNELS] = { 15, 13, 14, 12, 10, 8, 11, 7, 9, 6, 5, 2, 4, 3, 0, 1 }; static const int channel_size = (2 + IPECAMERA_PIXELS_PER_CHANNEL / 3); const int bytes = channel_size - 1; const size_t channels_per_row = (decoder->width / IPECAMERA_PIXELS_PER_CHANNEL); const size_t cpi = num_rows * channels_per_row; int pos = 0; uint32_t data; #ifdef HAVE_SSE __m128i mask = _mm_set_epi32(0x3FF, 0x3FF, 0x3FF, 0x3FF); __m128i packed; __m128i tmp1, tmp2; uint32_t result[4] __attribute__ ((aligned (16))) = {0}; #endif if (cpi * channel_size > num_words) { #ifdef VERBOSE fprintf(stderr, "Not enough data to decode frame, expected %lu bytes, but received %lu\n", cpi * channel_size * sizeof(uint32_t), num_words * sizeof(uint32_t)); #endif return EILSEQ; } for (size_t c = 0; c < cpi; c++) { int err = 0; const int info = raw[0]; int row = (info >> 4) & 0x7FF; int channel = info & 0x0F; int pixels = (info >> 20) & 0xFF; #ifdef SLOW_CHECKS int header = (info >> 30) & 0x03; const int bpp = (info >> 16) & 0x0F; CHECK_FLAG("raw header magick", header == 2, header); CHECK_FLAG("pixel size, only 10 bits are supported", bpp == 10, bpp); #endif CHECK_FLAG("pixels, only %u pixels per channel (offset: %zx)", pixels <= IPECAMERA_PIXELS_PER_CHANNEL, pixels, IPECAMERA_PIXELS_PER_CHANNEL, (*offset + pos)); CHECK_FLAG("channel, limited by %zu output channels (offset: %zx)", channel <= channels_per_row, channel, channels_per_row, (*offset + pos)); if (err) return EILSEQ; channel = channel_order[channel]; int base = row * IPECAMERA_WIDTH + channel * IPECAMERA_PIXELS_PER_CHANNEL; /* "Correct" missing pixel */ if ((row < 2) && (pixels == (IPECAMERA_PIXELS_PER_CHANNEL - 1))) { pixel_buffer[base] = 0; /* base++; */ } #ifdef HAVE_SSE for (int i = 1 ; i < bytes-4; i += 4, base += 12) { packed = _mm_set_epi32(raw[i], raw[i+1], raw[i+2], raw[i+3]); tmp1 = _mm_srli_epi32(packed, 20); tmp2 = _mm_and_si128(tmp1, mask); _mm_storeu_si128((__m128i*) result, tmp2); pixel_buffer[base+0] = result[3]; pixel_buffer[base+3] = result[2]; pixel_buffer[base+6] = result[1]; pixel_buffer[base+9] = result[0]; tmp1 = _mm_srli_epi32(packed, 10); tmp2 = _mm_and_si128(tmp1, mask); _mm_storeu_si128((__m128i*) result, tmp2); pixel_buffer[base+1] = result[3]; pixel_buffer[base+4] = result[2]; pixel_buffer[base+7] = result[1]; pixel_buffer[base+10] = result[0]; tmp1 = _mm_and_si128(packed, mask); _mm_storeu_si128((__m128i*) result, tmp1); pixel_buffer[base+2] = result[3]; pixel_buffer[base+5] = result[2]; pixel_buffer[base+8] = result[1]; pixel_buffer[base+11] = result[0]; } /* Compute last pixels by hand */ data = raw[41]; pixel_buffer[base++] = (data >> 20) & 0x3FF; pixel_buffer[base++] = (data >> 10) & 0x3FF; pixel_buffer[base++] = data & 0x3FF; data = raw[42]; pixel_buffer[base++] = (data >> 20) & 0x3FF; pixel_buffer[base++] = (data >> 10) & 0x3FF; pixel_buffer[base++] = data & 0x3FF; #else for (int i = 1 ; i < bytes; i++) { data = raw[i]; # ifdef SLOW_CHECKS header = (data >> 30) & 0x03; CHECK_FLAG("raw data magic (offset: 0x%zx, expected: 0x02)", header == 3, header, (*offset + pos + i)*sizeof(uint32_t)); if (err) return err; # endif pixel_buffer[base++] = (data >> 20) & 0x3FF; pixel_buffer[base++] = (data >> 10) & 0x3FF; pixel_buffer[base++] = data & 0x3FF; } #endif data = raw[bytes]; #ifdef SLOW_CHECKS header = (data >> 30) & 0x03; CHECK_FLAG("raw data magic (offset: 0x%zx, expected: 0x03)", header == 3, header, (*offset + pos + bytes)*sizeof(uint32_t)); CHECK_FLAG("raw footer magic (offset: 0x%zx, expected: 0x55)", (data & 0x3FF) == 0x55, (data & 0x3FF), (*offset + pos + bytes)*sizeof(uint32_t)); if (err) return err; #endif int ppw = pixels >> 6; for (int j = 0; j < ppw; j++) pixel_buffer[base++] = (data >> (10 * (ppw - j))) & 0x3FF; pos += channel_size; raw += channel_size; } *offset += pos; return 0; } static int ufo_decode_frame_channels_v5(UfoDecoder *decoder, uint16_t *pixel_buffer, uint32_t *raw, size_t num_rows, size_t *offset, uint8_t output_mode) { payload_header_v5 *header; size_t base = 0, index = 0; header = (payload_header_v5 *) &raw[base]; if (output_mode == IPECAMERA_MODE_4_CHAN_IO) { size_t off = 0; while (raw[base] != 0xAAAAAAA) { header = (payload_header_v5 *) &raw[base]; index = header->row_number * IPECAMERA_WIDTH + header->pixel_number; /* Skip header + one zero-filled words */ base += 2; if ((header->magic != 0xe0) && (header->magic != 0xc0)) { pixel_buffer[index + (0+off)*IPECAMERA_PIXELS_PER_CHANNEL] = 0xfff & (raw[base+5] >> 12); pixel_buffer[index + (4+off)*IPECAMERA_PIXELS_PER_CHANNEL] = 0xfff & (raw[base+4] >> 4); pixel_buffer[index + (8+off)*IPECAMERA_PIXELS_PER_CHANNEL] = ((0xf & raw[base+1]) << 8) | (raw[base+2] >> 24); pixel_buffer[index + (12+off)*IPECAMERA_PIXELS_PER_CHANNEL] = 0xfff & (raw[base+1] >> 16); } else { off++; if (header->magic == 0xc0) off = 0; } base += 6; } } else { while (raw[base] != 0xAAAAAAA) { header = (payload_header_v5 *) &raw[base]; index = header->row_number * IPECAMERA_WIDTH + header->pixel_number; /* Skip header + two zero-filled words */ base += 2; if (header->magic != 0xc0) { pixel_buffer[index + 15*IPECAMERA_PIXELS_PER_CHANNEL] = 0x3ff & (raw[base] >> 20); pixel_buffer[index + 13*IPECAMERA_PIXELS_PER_CHANNEL] = 0x3ff & (raw[base] >> 8); pixel_buffer[index + 14*IPECAMERA_PIXELS_PER_CHANNEL] = 0x3ff & (((0xff & raw[base]) << 4) | (raw[base+1] >> 28)); pixel_buffer[index + 12*IPECAMERA_PIXELS_PER_CHANNEL] = 0x3ff & (raw[base+1] >> 16); pixel_buffer[index + 10*IPECAMERA_PIXELS_PER_CHANNEL] = 0x3ff & (raw[base+1] >> 4); pixel_buffer[index + 8*IPECAMERA_PIXELS_PER_CHANNEL] = ((0x3 & raw[base+1]) << 8) | (raw[base+2] >> 24); pixel_buffer[index + 11*IPECAMERA_PIXELS_PER_CHANNEL] = 0x3ff & (raw[base+2] >> 12); pixel_buffer[index + 7*IPECAMERA_PIXELS_PER_CHANNEL] = 0x3ff & raw[base+2]; pixel_buffer[index + 9*IPECAMERA_PIXELS_PER_CHANNEL] = 0x3ff & (raw[base+3] >> 20); pixel_buffer[index + 6*IPECAMERA_PIXELS_PER_CHANNEL] = 0x3ff & (raw[base+3] >> 8); pixel_buffer[index + 5*IPECAMERA_PIXELS_PER_CHANNEL] = 0x3ff & (((0xff & raw[base+3]) << 4) | (raw[base+4] >> 28)); pixel_buffer[index + 2*IPECAMERA_PIXELS_PER_CHANNEL] = 0x3ff & (raw[base+4] >> 16); pixel_buffer[index + 4*IPECAMERA_PIXELS_PER_CHANNEL] = 0x3ff & (raw[base+4] >> 4); pixel_buffer[index + 3*IPECAMERA_PIXELS_PER_CHANNEL] = ((0x3 & raw[base+4]) << 8) | (raw[base+5] >> 24); pixel_buffer[index + 0*IPECAMERA_PIXELS_PER_CHANNEL] = 0x3ff & (raw[base+5] >> 12); pixel_buffer[index + 1*IPECAMERA_PIXELS_PER_CHANNEL] = 0x3ff & raw[base+5]; } base += 6; } } *offset += base; return 0; } /** * \brief Deinterlace by interpolating between two rows * * \param in Input frame * \param out Destination of interpolated frame * \param width Width of frame in pixels * \param height Height of frame in pixels */ void ufo_deinterlace_interpolate(const uint16_t *in, uint16_t *out, int width, int height) { const size_t row_size_bytes = width * sizeof(uint16_t); for (int row = 0; row < height; row++) { /* Copy one line */ memcpy(out, in + row*width, row_size_bytes); out += width; /* Interpolate between source row and row+1 */ for (int x = 0; x < width; x++) out[x] = (int) (0.5 * in[row*width + x] + 0.5 * in[(row+1)*width + x]); out += width; } /* Copy last row */ memcpy(out, in + width * (height - 1), row_size_bytes); } /** * \brief Deinterlace by "weaving" the rows of two frames * * \param in1 First frame * \param in2 Second frame * \param out Destination of weaved frame * \param width Width of frame in pixels * \param height Height of frame in pixels */ void ufo_deinterlace_weave(const uint16_t *in1, const uint16_t *in2, uint16_t *out, int width, int height) { const size_t row_size_bytes = width * sizeof(uint16_t); for (int row = 0; row < height; row++) { memcpy(out, in1 + row*width, row_size_bytes); out += width; memcpy(out, in2 + row*width, row_size_bytes); out += width; } } /** * \brief Decodes frame * * This function tries to decode the supplied data * * \param decoder An UfoDecoder instance * \param raw Raw data stream * \param num_bytes Size of data stream buffer in bytes * \param pixels If pointer with NULL content is passed, a new buffer is * allocated otherwise, this user-supplied buffer is used. * \param frame_number Frame number as reported in the header * \param time_stamp Time stamp of the frame as reported in the header * * \return number of decoded bytes or 0 in case of error */ size_t ufo_decoder_decode_frame(UfoDecoder *decoder, uint32_t *raw, size_t num_bytes, uint16_t *pixels, UfoDecoderMeta *meta) { int err = 0; size_t pos = 0; const size_t num_words = num_bytes / 4; if ((pixels == NULL) || (num_words < 16)) { #ifdef VERBOSE if (num_words < 16) fprintf(stderr, "Not enough frame data, only %zu bytes supplied \n", num_bytes); #endif return 0; } size_t rows_per_frame = decoder->height; const int version = (raw[pos+6] >> 24) & 0xF; #ifdef CHECKS CHECK_VALUE(raw[pos++], 0x51111111); CHECK_VALUE(raw[pos++], 0x52222222); CHECK_VALUE(raw[pos++], 0x53333333); CHECK_VALUE(raw[pos++], 0x54444444); CHECK_VALUE(raw[pos++], 0x55555555); switch (version) { case 0: CHECK_VALUE(raw[pos++], 0x56666666); CHECK_VALUE(raw[pos] >> 28, 0x5); meta->frame_number = raw[pos++] & 0xFFFFFFF; CHECK_VALUE(raw[pos] >> 28, 0x5); meta->time_stamp = raw[pos++] & 0xFFFFFFF; break; case 4: case 5: CHECK_VALUE(raw[pos] >> 28, 0x5); meta->cmosis_start_address = (raw[pos] >> 21) & 0x1FF; meta->n_skipped_rows = (raw[pos] >> 15) & 0x3F; meta->n_rows = rows_per_frame = raw[pos] & 0x7FF; pos++; meta->frame_number = raw[pos++] & 0x1FFFFFF; CHECK_VALUE(raw[pos] >> 28, 0x5); meta->time_stamp = raw[pos] & 0xFFFFFF; meta->output_mode = (raw[pos] >> 24) & 0x3; meta->adc_resolution = (raw[pos] >> 26) & 0x3; pos++; if ((meta->output_mode != IPECAMERA_MODE_4_CHAN_IO) && (meta->output_mode != IPECAMERA_MODE_16_CHAN_IO)) { # ifdef VERBOSE fprintf(stderr, "Output mode 0x%x is not supported\n", meta->output_mode); # endif return 0; } break; default: # ifdef VERBOSE fprintf(stderr, "Unsupported data format version %i detected\n", version); # endif return 0; } if (err) return 0; #else switch (version) { case 0: meta->frame_number = raw[pos + 6] & 0xFFFFFFF; meta->time_stamp = raw[pos + 7] & 0xFFFFFFF; break; case 4: meta->n_rows = rows_per_frame = raw[pos + 5] & 0x7FF; case 5: meta->frame_number = raw[pos + 6] & 0x1FFFFFF; meta->time_stamp = raw[pos + 7] & 0xFFFFFF; meta->output_mode = (raw[pos + 7] >> 24) & 0x3; meta->adc_resolution = (raw[pos + 7] >> 26) & 0x3; break; default: # ifdef VERBOSE fprintf(stderr, "Unsupported data format detected\n"); # endif return 0; } pos += 8; #endif switch (version) { case 0: err = ufo_decode_frame_channels_v0(decoder, pixels, raw + pos, num_words - pos - 8, &pos); break; case 4: err = ufo_decode_frame_channels_v4(decoder, pixels, raw + pos, num_words - pos - 8, rows_per_frame, &pos); break; case 5: err = ufo_decode_frame_channels_v5(decoder, pixels, raw + pos, rows_per_frame, &pos, meta->output_mode); break; default: break; } if (err) return 0; #ifdef CHECKS CHECK_VALUE(raw[pos++], 0x0AAAAAAA); meta->status1.bits = raw[pos++]; meta->status2.bits = raw[pos++]; meta->status3.bits = raw[pos++]; pos++; pos++; CHECK_VALUE(raw[pos++], 0x00000000); CHECK_VALUE(raw[pos++], 0x01111111); if (err) return 0; #else pos += 8; #endif return pos; } /** * \brief Iterate and decode next frame * * This function tries to decode the next frame in the currently set raw data * stream. * * \param decoder An UfoDecoder instance * \param pixels If pointer with NULL content is passed, a new buffer is * allocated otherwise, this user-supplied buffer is used. * \param num_rows Number of actual decoded rows * \param frame_number Frame number as reported in the header * \param time_stamp Time stamp of the frame as reported in the header * * \return 0 in case of no error, EIO if end of stream was reached, ENOMEM if * NULL was passed but no memory could be allocated, EILSEQ if data stream is * corrupt and EFAULT if pixels is a NULL-pointer. */ int ufo_decoder_get_next_frame(UfoDecoder *decoder, uint16_t **pixels, UfoDecoderMeta *meta) { uint32_t *raw = decoder->raw; size_t pos = decoder->current_pos; size_t advance; const size_t num_words = decoder->num_bytes / 4; if (pixels == NULL) return 0; if (pos >= num_words) return EIO; if (num_words < 16) return EILSEQ; if (*pixels == NULL) { *pixels = (uint16_t *) malloc(IPECAMERA_WIDTH * decoder->height * sizeof(uint16_t)); if (*pixels == NULL) return ENOMEM; } while ((pos < num_words) && (raw[pos] != 0x51111111)) pos++; advance = ufo_decoder_decode_frame(decoder, raw + pos, decoder->num_bytes - pos, *pixels, meta); /* * On error, advance is 0 but we have to advance at least a bit to net get * caught in an infinite loop when trying to decode subsequent frames. */ pos += advance == 0 ? 1 : advance; /* if bytes left and we see fill bytes, skip them */ if (((pos + 2) < num_words) && ((raw[pos] == 0x0) && (raw[pos+1] == 0x1111111))) { pos += 2; while ((pos < num_words) && ((raw[pos] == 0x89abcdef) || (raw[pos] == 0x1234567))) pos++; } decoder->current_pos = pos; if (!advance) return EILSEQ; return 0; }