
KAPTURE-2 Guide

KARLSRUHE PULSTAKEING ULTRA-FAST READOUT ELECTRONICS

Documentation by

Matthias Martin
matthias@martin-tue.de

IBPT

July 2019

KIT – The Research University in the Helmholtz Association www.kit.edu

Inhaltsverzeichnis

1 Using Kapture 2 1
1.1 Measurement in a nutshell . 1
1.2 start . 2

1.2.1 Basic Settings . 3
1.2.1.1 Configfile . 3
1.2.1.2 file/settings . 3

1.3 Timing Widget . 4
1.4 Time Scan Widget . 5
1.5 Calibration . 6
1.6 Correlation Test . 7
1.7 Acquisition . 8
1.8 Ploting . 8
1.9 EPICS . 8

2 GUI Developement 10
2.1 Pagackelist . 10
2.2 misc . 10
2.3 Modules . 10
2.4 FPGA stuff . 14

II

1 Using Kapture 2

1.1 Measurement in a nutshell

• start-up procedure: Boot PC, switch HighFlex off and on, reboot PC

• Prepare Board can always be used to reset the board

• check that PLL lock LEDs are on

• use internal pilot bunch

• activate HEADER

• T/H FMC2 25ps to 4 is no offset

• Using 500 MHz reference

1. connect the 125 MHz

2. do normal init with 125 MHz reference

3. connect the 500 MHz

4. run PLL swap 125 to 500, PLL Synch, ADC Synch

5. now it should be working. If log is missing redo step 4.

6. do not run Board Reset or other PLL Init! Then you would need to redo from beginning.

7. If a DMA error etc happens try soft reset

• shutdown: Just turn off the PC and the two switches for the T/H.

1

2 1. Using Kapture 2

1.2 start

The left Ethernet connector is configured for the KARA office network. The right one can be used for other
networks.

Currently the Start-up of the system needs some manual workaround. Before turning on the PC put switches
1 and 2 in off state. The unlabeled switch is always on! Then Boot the PC when the Lock-in screen is visible
turn the HighFlex of and on with the big switch on the Highflex. Then reboot the PC.

2

1.2. start 3

The two switches are to power down the input stage of the KAPTURE Modules. To power them up first
turn on the switch 1 and than the switch 2! (if there is a longer period without measurement one can turn
them back of to reduce thermal stress.)

Now you are good to go ;)

After starting the PC, start the GUI and hit ’Prepare Board’ and you are ready to Measure at 500 MHz with
125 MHz as reference. To reset the Board one can just use Prepare Board. (Soft Reset and Board Off are not
necessary for KAPTURE-2). After that DataFlow, Master Control and Data Check should be green. Also
take a look on the LEDs of the HighFlex. The 3 inside the red circle indicate that the PCI is working (if one
of them is not on - turn the HighFlex off and on and reboot). The 2 inside the blue circle indicate that both
PLL are locked. If one is of, redo the prepare Board.

It can be also done manually. For example if the 500 MHz is used as input clock. Than first Board Reset, now
the correct PLL init then PLL Sync, then ADC Calib and ADC Autosync.

On the MultiView Page one can find all the controls.

1.2.1 Basic Settings

1.2.1.1 Configfile

In ’home/user/.kcg2’ are two config files. One for the general and one specific for epics. The Configfile is
more or less self explaining. The newest option is the "Working Channels" config. It can be used to define
which channels are used. It does not affect the RAW-file but it ins used for displaying in some cases. If the
file does not exist a window opens where the config can also be edited.

The epics config is best to edit only via the epicsWidget.

After a change, the GUI needs to be restarted.

1.2.1.2 file/settings

This is a small Settings window to set at runtime the Save Location and the Sub-directory.

3

4 1. Using Kapture 2

1.3 Timing Widget

(Ctrl+T) contains the delay settings. KAPTURE-2 has 3 different delays.

330ps global Delay with 20 possible steps
25ps global Delay with 24 possible steps
3ps channel independent Delay with 32 steps

In addition the second KAPTURE Module can be delayed with the 25ps in the T/H FMC2 column. The
Default is 4! So for example value of 3 means that the second board will sample 25 ps earlier.

The advanced settings for ADC Delay and FPGA Delay are usually not to use. They are mainly for
development. In normal user-operation the GUI handles them automatically.

Abbildung 1.1: Timing distribution of a KAPTURE-2 Module. The Cascade Clock output of the first Module
is used as input for the second modul. One Important information: The PLL is running with
internal loopback to achieve a global Delay. This means that one output of the PLL is looped
back to the input and by changeing the delay of this output, the complete System is shifted.
But it is shifted in the oposite direction: increasing the delay means sampling earlyer. BUT
the GUI takes care of this so that for the user it feels like it is shown in the graphic.

4

1.4. Time Scan Widget 5

1.4 Time Scan Widget

(Ctrl+Shift+T)

The Time Scan was moved to a new Widget (mostly for code simplification). A TimeScan can be used to
find the delays.

Via a drop down menu one can select how the measured data is processed.

• Mean over Everything: It just calculates the mean of the complete data. This is usually not to helpful.

• Threshold: Calculates the mean only for data points with not in 2048+ threshold. If you have a negative
peak, enter a negative sign.

• Bucket: Calculates the mean of only on bucket - usually the best way.

• All Buckets: New Feature: It calculates the mean for all buckets individually. Therefore the resulting
file is bigger but it allows to compare the buckets.

It offers different Scan Modes. In the standard way (as it is in the Screenshot) it scans step by step through
all delays. In this mode usually one uses the 25 ps Step4 Option. If it is set to Step 1 one does over sample
the Signal and increases the needed Time. The Fast Mode is primary designed to find the region of the
Signal inside the 2 ns Bucket. In this case it sets spreads the 8 ADCs over the 100 ps area of the 3 ps. and
then goes over the complete 2 ns domain with 25 ps Step 1. It is usually best to use with a threshold of 20.
The Calibration Scan is only needed to generate the Calibration data with the analog 500 MHz signal and
will take a long time. (Details in the Calibration Section)

The Scan Results are stored in the sub folder TimeScan. In the logfile scan.info will the Scan Parameters
be stored. The user has the possibility to use the identifier entry to add any text to the Logfile.

The Plotwindow offers multiple view. In default the data is plotted for each Channel separately over the
delay setting. The other option is the timecorrected where the selected ADCs are plotted in one plot over
Time. In this view also the Calibration can be activated and the Error can be plotted. In Addition a Fit can
be performed.

For simpler positioning of the ADC Timings one can plot them inside the Timescan via show ADC in the
timecorrected view.

5

6 1. Using Kapture 2

1.5 Calibration

(Ctrl+U)

This offers a Calibration Routine. First a small widget opens where the TimeScan that will be used is to be
selected. It is also Possible to open the Calibration directly from the Scan Results Widget. In this case this
File selection is skipped.

The main Widget. The Left plot shows the original data with no calibration applied. The Right Plot than
with all calibration used. The lower input lines can be used to manually adjust the calibration.

The Calibration is split into two Parts

• 500 MHz:
This needs only to be done once. Maybe it is useful to repeat it after one year or so. To do this one
uses the 500 MHz RF clock as Input for the Channels and does a Calibration Scan. And then in this
Widget select the type to be 500 MHz. (the other Options have no effect in this case). It will take a view
minutes! It calibrates the width of the Delays.

• Peak:
This is the more often needed One. It should be done at least every time the Measurement setup
is changed. This calibrates the Baseline, Gain and Time offset for the 8 Channels. To do that take a
Timescan (usualy with step 4) of the Measurement Signal (as seen in the Screenshot). Now select if it
is a Negative Peak or a Positive Peak. If there is a region with the Baseline in front of the Puls (like
in the screen-shot) one can force the system to use that for Baseline determination via use first data as
Baseline. If not or not wanted, set it to 0 (which is also the default).

To run the Calibration hit Run. This does not override the old one. If the result is good use Save to write it
into the file. The old calibration file will than be renamed.

6

1.6. Correlation Test 7

1.6 Correlation Test

(Ctrl+Shift+C)

This is only needed if a PeakReconstruction is later to be done. It can also be opened from the Scan Results
Widget. With this, one can test if the used distribution of the Channels will give good results. Every time a
SingeRead or a ContinuousRead is done the widget updates the distribution. To Perform the test hit Run and
wait. On the current KAPTURE-2 System without a CUDA-GPU this is done remotely on ibpt-kapture1. If
the result is pleasing one can save the Correlation Correction Parameters via Save so that they can be used
later for the ReconstructionAlgorithm.

7

8 1. Using Kapture 2

1.7 Acquisition

(Ctrl+A)

The first to parameters define each acquisition, with the number of turns to observe and the number to skip.
Be aware, that the turns to observe the skipped turns include. (e.g. If observe is 1000 and skip is 1, the file
contains 500 data points).

The option shift FMC2 can be used if there is a shift between ADC1-4 and ADC5-8 witch is with the current
firmware usually the case. It does not change anything in the raw file! The shift can change when the 330 ps
is changed.

Currently also KAPTURE-2 is most stable without external revolution clock. Therefore Simulate Pilot Bunch
needs to be checked.

1.8 Ploting

1.9 EPICS

(Ctrl+E) The epics widget allows to read out parameters of KARA to store them in the Logfile for every
acquisition. To change the known PVs open the PV List. Here you can edit the display name and the PV
name as well as make them available for the Log and show them in the Monitor. To remove one entry use
the garbage can icon. A new PV can be added in the last line of the table. Changes will only be done in the
config file by apply + save. With apply the changes will be only temporally.

8

1.9. EPICS 9

9

2 GUI Developement

2.1 Pagackelist

• PyQT4

• sip

• pyqtgraph

• numpy

• psutil

• pyepics

• setuptools

2.2 misc

The Code is written to be working on both Python2 and Python3. At the moment this guide mostly only
provides infos for the modules I developed or changed.

Before the Idea of KAPTURE2 came to live there was the idea to put multiple Kapture1 boards in on PC. So
to the GUI a multi Kapture support was added. Unfortunately not in a perfect OOP fashion and therefore
the code is now a little bit inconsistent. The new changes for KAPTURE2 mostly ignore things from the multi
kapture implementation and therefore the current GUI version does not really support multi KAPTURE
anymore - sry.

Also it should work also on the old KAPTURE-1 System but it has not been tested.

The configfiles and the icons etc are located in .kcg2 to avoid conflicts with the old KAPTURE-1 GUI.

2.3 Modules

This is a not a complete list of all the modules with more or less small informations.

base/backend/board/communication

This contains the class PCI, witch wraps the system-calls for the pci communication to the FPGA. It also
creates one instance of the class with the name pci. By using

from .communication import pci

one can then read and write to the FPGA.

There is also a dummy class which is selected when the gui is started with –testing parameter. It does not
read or write to the hardware and can be therefore used while developing on a system without a KAPTURE
board - even on a windows system.

10

2.3. Modules 11

base/backend/board/board_config

This contains the class BoardConfiguration. It is the central control Class for all the KAPTURE settings.
(Like Delay, Turns to observe ...) It uses a dictionary to stores all the settings.

It is mainly base on observers. The function update(key, value) is used to change a setting. It then calls the
observers. There are 3 Types of observers

1. observers_write:
those are controlled by the class it self. They write the settings to the board.

2. observers_for_all:
they are called every time one setting is changed - independent of the key

3. observers:
they are called when the corresponding key changes. Those are mainly used to update the GUI.

The update function has an additional parameter write=True it controls weather the observers_write will be
called or not. By default it is set to true. This is only needed for the function read_from_board, wich reads
the settings from the FPGA, to prevent it from unnecessary rewrite it.

In widgets one can register a observer via the function observe(who, callback, key)

who is used as an identifier when one wants to remove the observer. It can be nearly everything - Object,
variable - usually in the GUI it is the Object that will be changed (Like the label that is updated).
callback is the function that will be called and needs to have one parameter by which the new value will be
passed.
key is the setting that will be observed.

When the widget will be deleted all corresponding observers need to be removed by unobserve(who, key)!

One example from acquiresettings widget

def __init__(...):
self.board_config = board.get_board_config(board_id)

self.fileSizeOutLabel = self.createLabel("??")
self.board_config.observe(self.fileSizeOutLabel , self.set_filesize , ’turns_observe’)

.

.

def set_filesize(self, state):

.

.

def closeEvent(self, event):

self.board_config.unobserve(self.fileSizeOutLabel , ’turns_observe’)

.

.

base/backend/board/sequences

The sequences are used to initialize the board. They are series of commands send to the FPGA. It is controlled
by the board_config and from the backendinterface. The module contains two function:
def read_sequence(board_version)

def run_sequnce(board_id, sequence, progressbar=None)

The sequences are stored in json files in base/backend/board/sequences/sequence_x.json with x to be the board_version.
The board_version is read by board_config from the FPGA.

11

12 2. GUI Developement

All sequences in the "sequence_names" list will have a Button.
The "initialization_sequence_order" specifies which sequences will be run for Prepare Board

One Sequence is represented like this

"demo_sequence": {

"Comment": "Text␣shown␣on␣Button",

"status_val": "", #some Sequences s e t th e s e to enable funct ions i n s i d e the gui
"sequence": [

[

"value", "reg",

"dialog␣text", # I f not an empty s t r ing a popup i s shown b e f o r e sending
"comment", #Printed in L o g f i l e
"key", "value", #Optional : used to update the board_conf ig
"key", "value" # I t c a l l s con f ig . update (key , value , write=False)

],

[

"value", "reg",

"", #No popup
"another␣command␣without␣update␣the␣board_config"

],

[

"value", "reg",

"",

"",

"key", "value", #only one update o f board_conf ig

]

]

},

base/backend/DataSet

Contains measured data. It has all the needed functions to open files, decode them and prepare them for
plotting etc.

This Class is also used outside the KCG.

base/backend/TimeScan

Class to read and generate timescans files.

This Class is also used outside the KCG.

base/backend/CalibrationHandel

This Class handels the Calibration Files and is used by the DataSet and TimeScan. It contains also an instance
of itself which should be used. So don’t create a new one.

theCalibration = CalibrationHandel()

When ever one cals theCalibration.openFile(...) it returns a identifier.

12

2.3. Modules 13

base/backendinterface

The most messy module. It contains a vast amount of functions. Including:
wrapper functions for the board_control

functions to run the sequences
everything for data acquisition

widgets/

The most of the controlling is in the widgets. They can be understood as some kind of modules. To add new
functionality to the GUI - like advanced analytic - one can just add a new Widget.

there are by now:

• AcquireSettingsWidget

• PlotWidget

• SingleReadWidget

• TimeingWidget

• TimescanWidget

• EpicsWidget
Has one speciality: it is initialized in base/kcg via

if config.use_epics:

from ..widgets import EpicsWidget

EpicsWidget.epicsConfig = EpicsWidget.EpicsConfig()

• UpdateCalibrationWidget

• CorrelationWidget

To activate a widget put the module name in widgets/__init__.py

If a widget should be updated everytime a new Data is acquired. register a observer onto "lastDataSet".
Like it is done in the PlotWidget

def initUI(self):
self.board_config.observe(self, self.observeDataSet , ’lastDataSet’)

def observeDataSet(self, data):

self.plot_live(data=data)

def closeEvent(self, event):

self.board_config.unobserve(self, ’lastDataSet’)

Do not forget to unobserve!

config.py

Module to handle the config file. It also provides some helperfunctions for accessing the current working
path as well as the installation path. Also is it the place where the colors for the Plotwidget are defined.

13

14 2. GUI Developement

2.4 FPGA stuff

Abbildung 2.1: Bank Register

14

	Using Kapture 2
	Measurement in a nutshell
	start
	Basic Settings
	Configfile
	file/settings

	Timing Widget
	Time Scan Widget
	Calibration
	Correlation Test
	Acquisition
	Ploting
	EPICS

	GUI Developement
	Pagackelist
	misc
	Modules
	FPGA stuff

